
1

Armstrong State University
Engineering Studies

MATLAB Marina – Structures Primer

Prerequisites
The Structures Primer assumes knowledge of the MATLAB IDE, MATLAB help, arithmetic
operations, built in functions, scripts, variables, arrays, logic expressions, conditional structures,
iteration, functions, debugging, characters and strings, and cell arrays. Material on these topics
is covered in the MATLAB Marina Introduction to MATLAB module, MATLAB Marina Variables
module, MATLAB Marina Arrays module, MATLAB Marina Logic Expressions module, MATLAB
Marina Conditional Structures module, MATLAB Marina Iteration module, MATLAB Marina
Functions module, MATLAB Marina debugging module, MATLAB Marina Character and Strings
module, and MATLAB Marina Cell Arrays module.

Learning Objectives
1. Be able to write MATLAB functions and programs that create structures and structure

arrays.
2. Be able to write MATLAB constructor functions for structures.
3. Be able to write MATLAB programs and functions that operate on data contained in

structure arrays.

Terms
structure, field, structure array, constructor, dynamic field, nested structure

MATLAB Functions, Keywords, and Operators
struct, . (dot operator), setfield, getfield, isfield, deal, class

Structures and Structure Arrays
Structures are collections of data and like cell arrays the data may be of different types.
However in structures, the data is organized and accessed by fields rather than an array.
Structures consist of a structure name and one or more field names. Structure arrays are arrays
where each element in the array is a structure. Structure arrays are commonly used to organize
large collections of data such as material or thermodynamic property tables.

Creating Structures
Structures can be created by:
• Assigning the value for each field of the structure directly.
• Using the MATLAB struct function.
• Using a constructor function (discussed later in the primer).

Examples of creating a structure containing a string and a number are shown in Figures 1a and
1b.

2

The grocery structure created in Figures 1a and 1b has two fields: item and quantity. The item
field holds a string and the quantity field holds a number.

The struct function takes pairs of string-cell array arguments corresponding to the field
name and field data values for the structure(s) to create and returns the structure(s). The
number of structures created is equal to the size of the cell arrays containing the field data
values or one if only scalar data values are given. If an empty set is given in place of the
arguments, an empty structure is created.

Accessing/Extracting Data from Structures
Most MATLAB operations cannot be done directly on data stored in structures. Similar to cell
arrays, one typically first extracts the data, operates on it, and moves it back into the structure
if desired. The data in the structure's fields can be individually accessed by giving the structure
name followed by the dot operator (.) followed by the field name. The structure variable name
refers to the entire structure. Figure 2a shows how one would extract the quantity data from a
grocery item and then compute the cost of the item assuming apples cost 50 cents each. The
extraction of data using the dot operator and field name returns only the data held in that field.

Figure 2b shows how one could update data in a single field of a structure, in this example
quantity field of the grocery structure. Data can be assigned to a particular field in a structure in
a similar manner as creating a structure using direct entry.

>> grocery.item = 'apple';
>> grocery.quantity = 4;
>> grocery
grocery =
 item: 'apple'
 quantity: 4

Figure 1a, Structure Creation using Direct Entry

>> grocery = struct('item', 'apple', 'quantity', 4);

Figure 1b, Structure Creation using struct Function

>> grocery = struct('item', 'apple', 'quantity', 4);
>> numberApples = grocery.quantity;
>> costApples = numberApples*0.50;

Figure 2a, Extracting Data in quantity Field of grocery Structure

3

Creating Structure Arrays, Constructor Functions
Structure arrays are an array of structures. Structure arrays can be created by:
• Assigning the value for each field of each structure of the structure array directly.
• Using the MATLAB struct function.
• Using a constructor function.
• Empty structures or structure arrays can be created using the MATLAB struct function.

Figure 3 shows an example of creating an empty structure and an empty grocery structure
using the struct function.

Figures 4a and 4b, illustrate creating a structure array using direct entry and using the struct
function.

>> grocery = struct('item', 'apple', 'quantity', 4);
>> numberApples = grocery.quantity;
>> numberApples = numberApples + 2;
>> grocery.quantity = numberApples;

Figure 2b, Updating Data in quantity Field of grocery Structure

>> emptyStruct = struct([]);
>> emptyGrocery = struct('item', {}, 'quantity', {});

Figure 3, Empty Structures

>> grocery(1).item = 'apple';
>> grocery(1).quantity = 4;
>> grocery(2).item = 'orange';
>> grocery(2).quantity = 3;
>> grocery(3).item = 'banana';
>> grocery(3).quantity = 2;
>> grocery
grocery =
1x3 struct array with fields:
 item
 quantity

Figure 4a, Structure Array Creation using Direct Entry

>> grocery = struct('item', {'apple', 'orange', 'banana'},
'quantity', {4,3,2});

Figure 4b, Structure Array Creation using struct Function

4

In Figure 4a, the array indexing selects one of the structures in the structure array and the fields
for that structure are accessed using the dot operator. In Figure 4b, the struct function
returns a structure array since the second argument in each pair of arguments is a cell array
rather than a scalar data element.

Rather than directly entering the field values for each element of the structure array as in
Figure 4a, the assignment of field values can be assigned to each structure in the structure
array using a loop as shown in Figure 5a. A sample run of the code of Figure 5a is shown in
Figure 5b.

Creating Structure Arrays, Constructor Functions
Structures can be created by:

Populating structure arrays can be very tedious. Typically the data for the structure array is read
from the user or a file. One must be careful when creating or modifying structures or structure
arrays directly. A typo on a field name results in the structure having this new unintended field
and for a structure array all structures will have this new unintended field. It is generally better
to create structures and structure arrays using constructor functions.

% create structure array of grocery items and quantities
numberItems = input('Enter number of items: ');
% read in items and quantities and save in structure array
for k = 1:1:numberItems
 itemName = input('Enter item: ', 's');
 message = sprintf('Enter quantity of %s: ', itemName);
 itemQuantity = input(message);
 grocery(k).item = itemName;
 grocery(k).quantity = itemQuantity;
end

Figure 5a, Structure Array Creation using Direct Entry Enclosed in a Loop

Enter number of items: 3
Enter item: apple
Enter quantity of apple: 4
Enter item: orange
Enter quantity of orange: 3
Enter item: banana
Enter quantity of pear: 2

>> disp(grocery)
1x3 struct array with fields:
 item
 quantity

Figure 5b, Sample Run and Results of Code of Figure 3a

5

Constructor functions are functions specifically designed for creating objects of a data type.
The MATLAB struct function is a constructor function and one can create their own
constructor functions. Constructor functions are particularly useful when creating structure
arrays. Constructors typically take one argument for each field in the structure they will create
and return a structure or structure array. For example, the constructor createGrocery of
Figure 6a takes two arguments: an item name and item quantity, and returns a single grocery
structure. Optional arguments are used to provide default field values or create a default
grocery structure with an empty string for the item name and zero for the item quantity.

Figure 6b shows an example of a code segment that uses the constructor of Figure 6a to create
a structure array. Notice that the structure of the code in Figure 6a is like that of Figure 5a
except rather than creating each structure in the structure array using direct entry, the
createGrocery constructor is used. An empty structure array is created to store each
structure in using the struct function and passing in a cell array of empty arrays for the items
and an array of zeros for the quantities. This is to prevent the structure array from being resized
every time a new structure is created. The struct function will create a structure array if the
field value parameters are cell arrays.

function result = createGrocery(itemName, itemQuantity)
if (nargin < 1)
 itemName = '';
 itemQuantity = 0;
elseif (nargin < 2)
 itemQuantity = 0;
end
result.item = itemName;
result.quantity = itemQuantity;
end

Figure 6a, Constructor createGrocery

% create structure array of grocery items and quantities
numberItems = input('Enter number of items: ');
% read in items and quantities and save in structure array
grocery = struct('item', cell(1,numberItems), 'quantity',
zeros(1,numberItems));
for k = 1:1:numberItems
 itemName = input('Enter item: ', 's');
 message = sprintf('Enter quantity of %s: ', itemName);
 itemQuantity = input(message);
 grocery(k) = createGrocery(itemName, itemQuantity);
end

Figure 6b, Using createGrocery Constructor to Create a Structure Array

6

The built in struct function could be used instead of the specialized createGrocery as
shown in Figure 6c. Advantages of using a specialized constructor function instead of the
struct function is field names do not have to be specified and the constructor can be
tailored to handle default or incomplete field data.

constructor.

The createGrocery constructor could also be designed to create a structure array if a cell
array of values were passed in for each field. Figure 7 shows a createGrocery constructor
function that will create a single structure if one value is passed in for each field or a structure
array if cell arrays are passed in for each field.

Note: the createGrocery constructor of Figure 7 assumes that the two cell arrays are the
same length and additional code would be needed to provide default values for the shorter of
the two if they are not.

Organizing Data using Structure Arrays
The fields of a structure may be any data type including arrays, cell arrays, or structures.
Generally one should try to keep the data type of the fields as simple as possible so as to avoid
complex data organizations where it is difficult to access the data.

function result = createGrocery(itemName, itemQuantity)
numberItems = length(itemName);
result =
struct('item',cell(1,numberItems),'quantity',cell(1,numberItems));

for k = 1:1:numberItems
 result(k).item = itemName{k};
 result(k).quantity = itemQuantity{k};
end

end

Figure 7, Constructor createGrocery

% create structure of a grocery item and quantity
% read in item and quantity and save in structure
itemName = input('Enter item: ', 's');
message = sprintf('Enter quantity of %s: ', itemName);
itemQuantity = input(message);
grocery1 = struct('item', itemName, 'quantity', itemQuantity);
grocery2 = creategrocery(itemName, itemQuantity);

Figure 6c, Using struct and createGrocery Constructors to Create Structures

7

Consider organizing the data resulting from evaluating the function
() () ()25cos 10 2cos 20f t t t ππ π= − − over the time range 0 0.5t≤ ≤ seconds. The program of

Figure 8 shows three ways of storing the results of evaluating the function over the time range.

The variables t and f1 store the time and function data using two 1D arrays. The variable f2
stores both the time and function data using a single structure. The structure f2 has two fields
each of which is a 1D array of numbers. The structure array f3 stores the data as a 1 by 51
structure array. Each structure in the structure array f3 has two fields each of which is a single
number.

To access the data stored in the structure f2, one would first access the field and then index
the resulting array stored in the field, for example f2.time(20) would return the 20th time
value and f2.values(20)would return the 20th function value.

To access the data stored in the structure array f3, one would first index the structure array
and then access the desired field of the structure stored at that place in the structure array, for
example f3(20).time would return the 20th time value and f3(20).values would
return the 20th function value.

Nested Structures
Nested structures are structures that have a field that is a structure. For example a structure
holding information about a person may have a date which itself could be a structure (Figure 9).

Be careful when using nested structures as it can result in complex data types that are difficult
to access and use the stored data. To extract the birth month of the bobInfo structure, one
would use the MATLAB statement BobsBirthMonth = bobInfo.birthdate.month.

% store data as two 1D arrays
t = 0.0:0.01:0.5;
f1 = 5*cos(10*pi*t) - 2*cos(20*pi*t - pi/2);
% store data as a single structure
f2.time = (0.0:0.01:0.5);
f2.values = 5*cos(10*pi*f2.time) - 2*cos(20*pi*f2.time - pi/2);
% store data as 1x51 structure array
numberPoints = 51;
for k = 1:numberPoints
 f3(k).time = 0.0 + (k-1)*0.01;
 f3(k).values = 5*cos(10*pi*f3(k).time) - ...
 2*cos(20*pi*f3(k).time - pi/2);
end

Figure 8, Storing Data Resulting from Evaluating a Function

8

Accessing/Extracting Data in Structure Arrays
To extract data from a structure array, the structure array is indexed similar to arrays and then
the appropriate field(s) are accessed. Indexing a structure array returns a single structure if the
index is a scalar or a structure array for an array of indices. Accessing a field of a single structure
returns one object whereas access the field of a structure array returns multiple objects. All of
the fields of a structure array can be accessed by giving the structure array name followed by
the dot operator and field name. This method of accessing the fields returns multiple results so
in general this is not that useful the result must be assigned to an equal number of variables.

For example, if grocery is a 1 by 5 structure array then grocery(2) is the second
structure, grocery(2).item is the item name of the second structure, grocery(1:3)is
a 1 by 3 structure array, and grocery(1:3).item is three separate item values each of
which is a string.

The general rules for accessing/extracting data in structure arrays cell are:
• Array indexing is used to access a single structure or a structure array that is a subset of the

original structure array. The indexing operation will result in a single object (single structure
or structure array) that can be assigned to a single variable.

• Array indexing using a scalar index followed by the dot operator and fieldname is used to
access the contents of a single field in one of the structures. The result is a single object
which can be assigned to a single variable.

• Accessing the fields of multiple or a range of structures generally requires a loop. The loop
iterates over the indices of the structure array. The structure array is then indexed using the
scalar index for that loop iteration followed by the dot operator and fieldname. The result is
a single object which is typically stored in an array.

Figure 10b shows the results of indexing the structure array created by the MATLAB code of
Figure 10a. Figure 10c shows the results of then accessing the item field of the indexed
structure array.

date.day = 20;
date.month = 'July';
date.year = 1995;

bobInfo.birthdate = date;
bobInfo.age = 18;
bobInfo.height = 70;
bobInfo.weight = 180;

Figure 9, Nested Structures

9

When assigning the result of accessing fields of a structure array, the number of variables on
the left hand side of the assignment must equal the number of objects on the right hand side.
Notice in Figure 10c, when the field of a structure array is accessed multiple objects are
returned and would need to be assigned to the same number of variables, for this example
three.

Figure 10d illustrates the different ways of accessing data in structure arrays. In the first line,
the structure array is indexed to obtain a single structure. In the second line, the structure array
is indexed using an array of indices to obtain a smaller structure array. In the third line, the
structure array is indexed and then the item field is accessed to obtain the number of items of a
single structure.

% create structure array of grocery items and quantities
itemNames = {'apple', 'orange', 'banana', 'pear', 'lemon',
'grapes'};
itemQuantities = {4, 2, 6, 2, 2, 1};
grocery = struct('item', itemNames, 'quantity', itemQuantities);

Figure 10a, grocery Structure Array

>> grocery(2)
ans =
 item: 'orange'
 quantity: 2
>> grocery(1:3)
ans =
 1x3 struct array with fields:
 item
 quantity

Figure 10b, Indexing Results of grocery Structure Array

>> grocery(2).item
ans =
 orange
>> grocery(1:3).item
ans =
 apple
ans =
 orange
ans =
 banana

Figure 10c, Results of Accessing item Field of Indexed grocery Structure Array

10

In the fourth and fifth lines of Figure 10d, the incorrect and correct way to access the same filed
of multiple structures is shown. In the fourth line, the structure array is indexed using an array
of indices to obtain a smaller structure array. The dot operator is then used to access the item
field of each structure in the smaller structure array resulting in three objects. Only one variable
is on the left hand side of the assignment, so only the first item field value is saved (the other
two item field values are discarded). This is not a syntax error but only one of three access field
values is saved. In line 5, the same operation is performed as in line 4 but the left hand side of
the assignment has three variables so each of the three returned item field values is stored in
the corresponding variable.

Operating on Data in Structure Arrays
Most MATLAB operations cannot be done directly on data stored in structures or structure
arrays. Similar to cell arrays, one typically first extracts the data, operates on it, and moves it
back into the structure or structure array if desired. In general when working with a structure
array, a loop is used to iterate through the structure array and the desired field info of each
structure is extracted and saved or operated on.

The MATLAB program of Figure 11 shows an example of extracting the quantity information
from a grocery structure array and determining the average quantity of the items.

% create structure array of grocery items and quantities
itemNames = {'apple', 'orange', 'banana', 'pear', 'lemon', 'grapes'};
itemQuantities = {4, 2, 6, 2, 2, 1};
grocery = struct('item', itemNames, 'quantity', itemQuantities);

% extract the quantity field data
numberItems = length(grocery);
itemQuan = zeros(1,numberItems);
for k = 1:1:numberItems
 itemQuan(k) = grocery(k).quantity;
end

% determine the average quantity
averageQuantity = mean(itemQuan);

Figure 11, MATLAB Program to Extract and Operate on Structure Array Data

>> r1 = grocery(2);
>> r2 = grocery(1:3);
>> r3 = grocery(2).item;
>> r4 = grocery(1:3).item;
>> [r5 r6 r7] = grocery(1:3).item;

Figure 10d, Accessing Data in grocery Structure Array

11

Using the grocery structure array created by the code segment of Figure 11, the operations
shown in Figure 12a are syntactically incorrect although one might think that they would work.

The sum function sums the elements of a vector (or columns of a 2D array). The statements
grocery.quantity and grocery(1:end).quantity return multiple results (in this
and sum expects a single argument. Using the min, max, and mean functions on the same data
would result in the same kind of syntax error.

The operations shown in Figure 12b are syntactically correct but the result is not what one
might expect.

The statement grocery(1:end.quantity returns multiple items, but only a single
variable q is on the left hand side of the assignment so only the first element extracted from
the structure array is assigned. Since the scalar value (only the first element) is being assigned
to a 1D array, MATLAB replicates the value according to the size of the 1D array. In general
there is no easy way around using a loop to extract the structure array field data one at a time
and place them in the appropriate place of an array (usually an array of numbers).

Properties of Ideal Gas Table Loop Up using a Structure Array
Figure 13a shows a portion of a thermodynamics table for the ideal gas properties of air. Many
engineering problems involve looking up properties from large tables of data that are needed
for computations. Figure 13b shows the organization of the structure array containing the data
from the ideal gas properties table.

Figures 13d shows the MATLAB function to lookup the ideal gas properties of air given a field
name and a value. The function returns a structure containing all six properties (temperature T,
enthalpy h, internal energy u, entropy s, relative pressure pr, relative volume vr) for the
specified field and value.

>> sum(grocery.quantity)
??? Error using ==> sum
Too many input arguments.

>> sum(grocery(1:end).quantity)
??? Error using ==> sum
Too many input arguments.

Figure 12a, Syntax Errors Generated from Incorrectly Operating on Structure Array Data

>> q(1:length(grocery)) = grocery(1:end).quantity
q = 4 4 4 4 4
>> q = grocery(1:end).quantity
q = 4

Figure 12b, Syntactically Correct but Logically Incorrect Operations on Structure Array

12

Figure 13c shows an alternative function header that returns the properties via separate
variables rather than a structure. It would be more awkward to use the function if it returned
six variables because even if only one field from the table were desired, the function call would
still need up to six variables on the left had side of the assignment, five of which would not be
used.

Figure 13e shows three function calls of the idealGasTableAirLookup function and what
the function returns. The first call has a temperature that is not in the table and the function
(and calling program) terminates due to the error handling. The other two function calls show
examples of a temperature value that is in the table and a volume that is between two table
values.

Figure 13a, Portion of Thermodynamics Table for Ideal Gas Properties of Air (SI Units)

idealGasTableAir =
 1x122 struct array with fields:
 T
 h
 u
 s
 pr
 vr

Figure 13b, Organization of Ideal Gas Properties Table Structure Array

function [T, h, u, s, pr, vr] = idealGasTableAirLookup(table,
field, fieldValue)

Figure 13c, Alternative Function Header (more awkward to use)

13

In the idealGasTableAirLookup function of Figure 13d:
• The vr field data is in the opposite order of the other field data so a conditional statement

like (value < table(1).(field) || value > table(end).(field))
would not detect a vr value that was outside the table entry boundaries. Instead the
minimum and maximum values in the field are determined and compared to the passed in
value. It is typically considered poor practice to terminate programs when errors are
detected. In the idealGasTableLookup function, if the desired value is outside the
bounds of the table for that field, it does not make sense to do any further work with the
table values. Alternatively, a try-catch block could be added to the function to deal with the
error or the function could return the lowest or highest table entry along with an indication
that the table values are probably not meaningful for that field value.

• The best matched table entry is found by comparing the table entry field data of each
element in the structure array to the value and determining which entry is closest to the
value. If the table entry being compared is closer than the previously compared table entry,

function result = idealGasTableAirLookup(table, fieldName, value)
% if value is outside table boundaries for that field generate an
exception
tableBoundaries = [table(1).(fieldName), table(end).(fieldName)];
if (value < min(tableBoundaries) || value > max(tableBoundaries))
 error('value out of table range');
end
% determine closest table entry corresponding to the value
% start by assuming first table entry is the closest
ind = 1;
closest = abs(value - table(1).(fieldName));
% check rest of table entries to see if any are closer
for k = 2:1:length(table)
 % compute how close table entry k is to the value
 howClose = abs(value - table(k).(fieldName));
 % update what is thought to be closest table entry
 % if table entry k is closer to the value
 if (howClose < closest)
 ind = k;
 closest = howClose;
 else
 break;
 end
end
% return the table entry
result = table(ind);
end

Figure 13d, idealGasTableAirLookup Function

14

the index of what is considered the closest table entry and how close the values are is
updated.

• The T, h, u, s, and pr field data are in ascending order and the vr field data is in descending
order. The search for the closest table entry can be stopped (accomplished with the break
statement in else part of conditional statement inside the for loop) once the entry being
checked is not closer than the previous checked entry as any subsequent entry will be
further away and be a worse match. Normally the use of break to terminate loops is
discouraged. In this case, when searching for values in an ordered table, once the desired
value is found there is no sense in searching remainder of table and if the table is large this
can save substantial processing time.

Figure 13f shows an alternative implementation of the idealGasTableAirLookup
function using array and element by element operations instead of a loop. Typcailly when
extracting data from a structure array a loop is used. In this version of the
idealGasTableAirLookup function, the field data for one field is extracted using the
statement fieldData = [table(1:1:end).(fieldName)];. Recall that when
accessing the fields of multiple structures, multiple objects are returned. In this case , since all
the fields contain the same data type (real numbers) the multiple return objects can be
concatenated into a 1D array avoiding the typical assignment of multiple object problem with
extracting field data from structure arrays. This method of extracting structure array field data

>> r = idealGasTableAirLookup(idealGasTableAir,'T',100)
Error using idealGasTableAirLookup (line 5)
value out of table range

>> r = idealGasTableAirLookup(idealGasTableAir,'T',400)
r =
 T: 400
 h: 400.9800
 u: 286.1600
 s: 1.9919
 pr: 3.8060
 vr: 301.6000

>> r = idealGasTableAirLookup(idealGasTableAir,'vr',489)
r =
 T: 330
 h: 330.3400
 u: 235.6100
 s: 1.7978
 pr: 1.9352
 vr: 489.4000

Figure 13e, Sample Function Calls of idealGasTableAirLookup Function

15

does not always result in a nice array, but can be used when the extracted data consists of only
numbers of the same data type.

Additional Useful Functions for Operating on Structures
The dot operator and struct and length functions are commonly used for operating on
structures and structure arrays. The table of Figure 14 gives some additional built in functions
that may be useful when working with structures and structure arrays. MATLAB’s
documentation has more details on these and examples of their use.

function result = idealGasTableAirLookup(table, fieldName, value)
% if value is outside table boundaries for that field generate an
exception
tableBoundaries = [table(1).(fieldName), table(end).(fieldName)];
if (value < min(tableBoundaries) || value > max(tableBoundaries))
 error('value out of table range');
end
% extract field data from table structure array
fieldData = [table(1:1:end).(fieldName)];
% determine how close each table entry is to the value
howClose = abs(value - fieldData);
% determine the structure array index of the closest table entry
[smallestHowClose, ind] = min(howClose);
% return the table entry
result = table(ind);
end

Figure 13f, idealGasTableAirLookup Function Implemented using Array Operations

16

Function Description
ISSTRUCT(S)

Returns logical true (1) if S is a structure and
logical false (0) otherwise.

ISFIELD(S,FIELD)

Returns true if the string FIELD is the name
of afield in the structure array S.

F = GETFIELD(S,'field')

Returns the contents of the specified field.
This is equivalent to the syntax F = S.field. S
must be a 1-by-1 structure.

S = SETFIELD(S,'field',V)

Sets the contents of the specified field to the
value V. This is equivalent to the syntax
S.field = V. S must be a 1-by-1 structure. The
changed structure is returned.

S = RMFIELD(S,'field') Removes the specified field from the m x n
structure array S. The size of input S is
preserved.
S = RMFIELD(S,FIELDS) removes more than
one field at a time when FIELDS is a
character array or cell array of strings. The
changed structure is returned. The size of
input S is preserved.

NAMES = FIELDNAMES(S)

Returns a cell array of strings containing the
structure field names associated with the
structure s.

S = CELL2STRUCT(C,FIELDS,DIM)

Converts the cell array C into the structure S
by folding the dimension DIM of C into fields
of S. SIZE(C,DIM) must match the number of
field names in FIELDS. FIELDS can be a
character array or a cell array of strings.

C = STRUCT2CELL(S)

Converts the M-by-N structure S (with P
fields) into a P-by-M-by-N cell array C.

S = class(OBJ) Returns the class name of an object, for
example double or struct.

Figure 14, Useful Operators and Functions for Operating on Structures

Last modified Thursday, November 13, 2014

This work by Thomas Murphy is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

	Prerequisites
	Learning Objectives
	Terms
	MATLAB Functions, Keywords, and Operators
	Structures and Structure Arrays
	Creating Structures
	Accessing/Extracting Data from Structures
	Creating Structure Arrays, Constructor Functions
	Creating Structure Arrays, Constructor Functions
	Organizing Data using Structure Arrays
	Nested Structures
	Accessing/Extracting Data in Structure Arrays
	Operating on Data in Structure Arrays
	Properties of Ideal Gas Table Loop Up using a Structure Array
	Additional Useful Functions for Operating on Structures

